费氏粒度是一种粉末粒度值,测试基本方法为稳流式空气透过法,即在空气流速和压力不变的条件下,测定比表面积和平均粒度。费氏法是一种相对的测量方法,不能地测定出粉末的真实粒度,仅用来控制工艺过程和产品的质量。
透过法测定粒度由于取样较多,有代表性,使结果的重现性好。对较规则的粉末,同显微镜测定的结果相符合。空气透过法所反映的是粉末的外比表面,代表单颗粒或二次颗粒的粒度,如果与BET法(反应全比表面和一次颗粒的大小)联合使用,就能判断粉末的聚集程度和决定二次颗粒中一次颗粒的数量。
费氏法是一种相对的测量方法,不能地测定出粉末的真实粒度,仅用来控制工艺过程和产品的质量。该方法只能地测量空气通过粉末堆积体时的透过率,其值的大小取决于它的孔结构。粉末堆积体的孔隙度、颗粒形状、粒度、粒度组成、粒度分布和压制方法等均影响孔的结构。该方法仅适用于化学成分相同和粒度组成相似的粉末。对于化学成分相同而粒度组成不同的粉末,则会产生较大的测量误差。有时化学成分相同而粒度组成不同的两种粉末会得到相同的费氏值,因为它们有相同的透过率。该方法所测量的粒度值不能和其它粒度测量结果进行比较。
沉降法是根据不同粒径的颗粒在液体中的沉降速度不同测量粒度分布的一种方法。它的基本过程是把样品放到某种液体中制成一定浓度的悬浮液,悬浮液中的颗粒在重力或离心力作用下将发生沉降。
不同粒径颗粒的沉降速度是不同的,大颗粒的沉降速度较快,小颗粒的沉降速度较慢。那么颗粒的沉降速度与粒径有怎样的数量关系,通过什么方式反映颗粒的沉降速度呢?
① Stokes定律:在重力场中,悬浮在液体中的颗粒受重力、浮力和粘滞阻力的作用将发生运动,其运动方程为:
这就是Stokes定律。
从Stokes定律中我们看到,沉降速度与颗粒直径的平方成正比。比如两个粒径比为1:10的颗粒,其沉降速度之比为1:100,就是说细颗粒的沉降速度要慢很多。为了加快细颗粒的沉降速度,缩短测量时间,现代沉降仪大都引入离心沉降方式。在离心沉降状态下,颗粒的沉降事度与粒度的关系如下:
这就是Stokes定律在离心状态下的表达式。由于离心转速都在数百转以上,离心加速度ω2r远远大于重力加速度g,Vc>>V,在粒径相同的条件下,离心沉降的测试时间将大大缩短。
② 比尔定律:
如前所述,沉降法是根据颗粒的沉降速度来测试粒度分布的。但直接测量颗粒的沉降速度是很困难的。在实际应用过程中是通过测量不刻透过悬浮液光强的变化率来间接地反映颗粒的沉降速度的。